
 - 1 -

Performance Tuning with reference to Oracle

Hardeep Singh

http://blog.hardeep.name

Performance tuning activity can be applied to:

1. An application

2. Process tuning

3. A SQL query

Whenever an application is requires tuning, the first step is to go look at the code. If the

code is not optimal, no amount of Oracle tuning will speed up the application. Once that

step is taken care of, we can come to Oracle level tuning.

Let’s start with SQL query tuning.

A filter is something that restricts certain rows from appearing in the output. For example

where employee.emp_type=’P’

However, the following is not a filter, it’s a join:

where a.emp_type = b.emp_type

Some of the common query pitfalls are:

 Using NOT EQUAL TO prevents the use of indexes.
a.emp_type <> ‘P’

 Replace with EQUAL TO, LESS THAN or GREATER THAN wherever possible
 a.emp_type = ‘T’

 Large IN lists also prevent use of indexes

 Functions (e.g. substring) prevent the use of indexes

 UNION operation involves an internal DISTINCT operation to eliminate all the

duplicate rows, and as such is expensive. If the distinctness is not that important

for your query, use UNION ALL instead of UNION

Book-Author example

http://blog.hardeep.name/

 - 2 -

Consider the two tables above: the book and the author tables. If the information had to

be printed - the book table would print on ten pages and the author table on three.

In order to tune queries involving these tables, it’s important to imagine how you would

search for the information if you were given the table contents printed on paper.

Consider the query:

“I need all the author names who have authored reference books”

We can either start at the book table, or at the author table. If we start with the author

table, we can lookup the first author ID, and then look through the entire book table if he

has any reference books. The other way is to start with the book table, and when we find

a reference book we can check the author name against that. Which one is faster? The

second – starting with the book table. Why? – because the author table is order by

Author ID.

Now let’s have a look at how Oracle interprets indexes.

If we had an index on the Book table, on the fields Author ID and Book ID, this is

how it would logically look. It can be used if we know both the Book ID and the

Author ID (have both the fields in the where clause of the query). It can also be used

if we know just the Author ID, but will be slightly slower (see RANGE SCAN

below). However, it cannot be used if we know just the Book ID.

Before executing a query, Oracle creates a plan - the order in which it will search the

tables, the indexes it will use, the way it will use the indexes etc. Step 1 in tuning is to

check the plan for the SQL in question:

 - 3 -

In order to generate the plan, on SQL Plus use:

set autotrace on;

or if we want to just see the trace without executing the query use:

set autotrace traceonly explain;

With Toad, you can press Control – E to see the plan.

Now looking at the explain plan shown above, what does it mean? The point to note is

that explain plan is actually executed from more indented to less indented (inside to

outside) and from bottom to top.

Table access full means that the complete table needs to be searched in order to find the

information. Index range scan means that index will be used, however the filters

provided in the WHERE clause may not be ‘complete’.

Index full scan means the entire index will be searched.

Table access by index rowid means the rows are being located using an index.

Hash, Nested loops and Merge are all different types of joins.

These are the most commonly seen operations in an explain plan.

More information on the plan: http://www.orafaq.com/node/1420

Now that we know how Oracle is executing our query, the next step is to influence the

way Oracle runs the query. How to do that?

 By creating indexes and optimizing the join order of tables

 By creating statistics

 By adding hints to the query

http://www.orafaq.com/node/1420

 - 4 -

I have already discussed indexes. An example of how to create an index:

CREATE INDEX book_author_index ON book (book_id,

author_id);

Statistics refers to the information that Oracle can store about tables and fields on your

request that will help it to make more informed decisions regarding the plan. For

example, let us say that purchase order table P has a field STATUS which can be ‘O’

(Open) or ‘C’ (Close). If you give Oracle a query with this field in the WHERE clause –

it will assume that O & C values are equally distributed: 50% each. In truth this may not

be the case: O values maybe present only in 10% of the rows.

Such information being calculated offline, stored and used during plan making is called

statistics.

To create statistics use something like:

EXEC DBMS_STATS.gather_table_stats('SYSADM', 'BOOK');

More information on statistics: http://www.oradev.com/create_statistics.jsp

A hint is written as part of the query, but doesn’t affect the output. It only affects the

plan.

For example:

SELECT /*+ INDEX(A IDX_PURCH_ORD) */ *

FROM PURCH_ORD A

WHERE STATUS=’O’

The hint is written within comments, but with a plus sign to indicate that it’s a hint, not a

comment. This hint tells Oracle to use the index IDX_PURCH_ORD to lookup the table

PURCH_ORD. Most of the time Oracle automatically uses the correct index, however is

certain ‘tough’ situations it needs help.

One of the most useful hints that I have found is the LEADING hint. This hint tells

Oracle to start with a particular table from the tables used in the query. For example:

SELECT /*+ LEADING(i) */ po_id, status

FROM PURCH_ORD p, INVOICE i

WHERE invoice=’123456’ AND

i.po_id=p.po_id

In this query, the LEADING hint tells Oracle to start with the INVOICE table, find the

PO_ID for the invoice, and use that to lookup the STATUS in the p table.

A good list of all indexes is available here: http://www.adp-

gmbh.ch/ora/sql/hints/index.html

http://www.oradev.com/create_statistics.jsp
http://www.adp-gmbh.ch/ora/sql/hints/index.html
http://www.adp-gmbh.ch/ora/sql/hints/index.html

 - 5 -

Now coming to process tuning. We already know how to tune an SQL query. The

problem that remains now is to find out which query is doing badly, from among all the

queries being executed by the process. If the process is small / simple – a simple

inspection of the code will give you an idea of the problem SQL. In a slightly larger SQL

you may be able to add some code to display the current time before and after each query.

However, if that is not possible, or the SQL is very large – we need some automated

tracing to find the SQL. One good way to do this is through the 10046 trace.

To perform this trace the process should execute the following SQL statement as the first

step:

ALTER SESSION SET EVENTS '10046 trace name context forever,

level 12'

Once the process completes, the DBA should be able to check the trace output, and run it

through tkprof to give you an HTML report. This report gives you a list of the worst

queries, the corresponding plans and the waiting times for those queries. It’s a wealth of

information to pinpoint the problem SQLs and start tuning them.

If the DBA gives you a trace file (from the udump folder on the database server) and not

a report, you can use the trace file to generate the report yourself as below:

tkprof <trace_file> <output_file> sort=fchela

Lets move on now to application tuning. This is similar to process tuning except that we

need to find the worst performers in the entire application, not just a given process. One

way to do that is through the STATPACK analysis. The DBA can help in generating a

STATPACK report for a period (say one day) and would give you a report of the worst

SQLs running during the period. More information on STATPACK is here:

http://docs.oracle.com/cd/B10500_01/server.920/a96533/statspac.htm

A quick cheat sheet:

When you get a query to tune, what are the things we can quickly look at to get going?

Here is a quick cheat sheet:

 Try to limit the output. For example, if we want a list of open orders, we may

not be interested in orders from more than 2 years back. Hence, if the

order_date is an indexed column, we can add:

order_date >= SYSDATE-700

 Have a look at the indexes being used. The index usage may not be optimal.

 Have a look at the join order of the tables. As a rule, Oracle finds it hard to

come up with a good join order where the number of tables is 4 or more. Use

the LEADING hint if needed, or the USE_NL hint.

 If the query uses multiple business units such as:

http://docs.oracle.com/cd/B10500_01/server.920/a96533/statspac.htm

 - 6 -

business_unit IN (‘NL100’,’NL200’,’NL300’)

it may be faster to run the query separately, once for each business unit. If it

must run as a single query, explore connecting the three separate queries

through UNION ALL

 If its being run for multiple FISCAL_YEARs, the same applies as business

unit above

 It we are joining the tables (or self join), it is important to use all the keys in

the join. For example

Case study 1:

One of the queries in REQSOURCE (requisition sourcing application engine program)

was the worst performing query of the system.

The query used to take more than 15 minutes to run, and would cause a lot of IO

operations, throttling other processes. We had to keep this process on hold whenever we

noticed performance issues, and release it later when the performance became better.

The reason this query was such a problem was that a lot of Canadian requisitions

remained open in the system. This was more due to business processes, and a process had

been created to close the requisitions. However the new process did not receive business

approval because of the deemed risk.

Hence we decided to think of something out of the box.

The query was this:

INSERT INTO PS_REQ_DIST_SUM_WK

(PROCESS_INSTANCE, BUSINESS_UNIT, REQ_ID, LINE_NBR, SCHED_NBR,

QTY_REQ, MERCHANDISE_AMT, QTY_OPEN, QTY_OPEN_STD, AMT_OPEN,

AMT_OPEN_BSE, DISTRIB_PCT)

SELECT

 &BIND(PROCESS_INSTANCE)

, DIST.BUSINESS_UNIT

, DIST.REQ_ID

, DIST.LINE_NBR

, DIST.SCHED_NBR

, SUM(DIST.QTY_REQ)

, SUM(DIST.MERCHANDISE_AMT)

, SUM(DIST.QTY_OPEN)

, SUM(DIST.QTY_OPEN_STD)

, SUM(DIST.AMT_OPEN)

, SUM(DIST.AMT_OPEN_BSE)

, SUM(DIST.DISTRIB_PCT)

FROM PS_REQ_LN_DISTRIB DIST

WHERE (DIST.REQ_ID, DIST.BUSINESS_UNIT, DIST.LINE_NBR, DIST.SCHED_NBR)

 IN (SELECT /*+ LEADING(HDR) USE_NL (HDR SHIP) */

 SHIP.REQ_ID, SHIP.BUSINESS_UNIT, SHIP.LINE_NBR, SHIP.SCHED_NBR

 FROM PS_REQ_HDR HDR

 ,PS_REQ_LINE_SHIP SHIP

 WHERE &BIND(SELECT_PARM1,NOQUOTES)

 HDR.REQ_STATUS = 'A'

 AND HDR.HOLD_STATUS = 'N'

 AND HDR.RFQ_IND = 'N'

 AND HDR.IN_PROCESS_FLG = 'N'

 - 7 -

 AND HDR.BCM_HDR_STATUS = 'V'

 AND SHIP.BUSINESS_UNIT = HDR.BUSINESS_UNIT

 AND SHIP.REQ_ID = HDR.REQ_ID

 AND NVL(SHIP.BAL_STATUS,' ') = 'I'

 MINUS

 SELECT S.PO_STG_ID, S.BUSINESS_UNIT, S.LINE_NBR, S.SCHED_NBR

 FROM PS_PO_ITM_STG S

 WHERE S.PO_STG_TYPE = 'R'

)

GROUP BY DIST.BUSINESS_UNIT

 ,DIST.REQ_ID

 ,DIST.LINE_NBR

 ,DIST.SCHED_NBR

HAVING (SUM(DIST.QTY_OPEN_STD)>0) OR (SUM(DIST.AMT_OPEN)>0)

The problem with this query was that the filter that would cause the maximum reduction

of rows in the output (the main ‘exclusion’ clause) was in the HAVING part, due to

which it was executed at the very end. As a result, a large number of requisitions had to

undergo all the calculations, only to be dropped at the end because they did not satisfy

HAVING criteria.

Since the conditions were based on SUM aggregator, not on individual row values, they

could neither be improved through indexes, nor moved to the WHERE clause.

We came up with this key idea: since neither quantity nor amount can be negative, hence

for the SUM to be more than zero, at least one of the individual rows have to be more

than zero.

As a result we created an index on BUSINESS_UNIT, QTY_OPEN_STD and

AMT_OPEN. Using this index we rewrote the SELECT part of the query as below:

SELECT &BIND(PROCESS_INSTANCE)

, DIST.BUSINESS_UNIT

, DIST.REQ_ID

, DIST.LINE_NBR

, DIST.SCHED_NBR

, SUM(DIST.QTY_REQ)

, SUM(DIST.MERCHANDISE_AMT)

, SUM(DIST.QTY_OPEN)

, SUM(DIST.QTY_OPEN_STD)

, SUM(DIST.AMT_OPEN)

, SUM(DIST.AMT_OPEN_BSE)

, SUM(DIST.DISTRIB_PCT)

FROM PS_REQ_LN_DISTRIB DIST

WHERE EXISTS(SELECT /*+ INDEX(X PSDREQ_LN_DISTRIB) */ 1 FROM

PS_REQ_LN_DISTRIB X WHERE

 X.BUSINESS_UNIT=DIST.BUSINESS_UNIT AND X.REQ_ID=DIST.REQ_ID AND

X.LINE_NBR=DIST.LINE_NBR

 AND X.SCHED_NBR=DIST.SCHED_NBR AND (X.QTY_OPEN_STD>0 OR X.AMT_OPEN>0))

AND

 (DIST.REQ_ID, DIST.BUSINESS_UNIT, DIST.LINE_NBR, DIST.SCHED_NBR)

 IN (SELECT /*+ LEADING(HDR) USE_NL (HDR SHIP) */

 SHIP.REQ_ID, SHIP.BUSINESS_UNIT, SHIP.LINE_NBR, SHIP.SCHED_NBR

 FROM PS_REQ_HDR HDR

 ,PS_REQ_LINE_SHIP SHIP

 WHERE &BIND(SELECT_PARM1,NOQUOTES) DIST.BUSINESS_UNIT=HDR.BUSINESS_UNIT

 AND HDR.REQ_STATUS = 'A'

 - 8 -

 AND HDR.HOLD_STATUS = 'N'

 AND HDR.RFQ_IND = 'N'

 AND HDR.IN_PROCESS_FLG = 'N'

 AND HDR.BCM_HDR_STATUS = 'V'

 AND SHIP.BUSINESS_UNIT = HDR.BUSINESS_UNIT

 AND SHIP.REQ_ID = HDR.REQ_ID

 AND NVL(SHIP.BAL_STATUS,' ') = 'I'

 MINUS

 SELECT S.PO_STG_ID, S.BUSINESS_UNIT, S.LINE_NBR, S.SCHED_NBR

 FROM PS_PO_ITM_STG S

 WHERE S.PO_STG_TYPE = 'R'

)

GROUP BY DIST.BUSINESS_UNIT

 ,DIST.REQ_ID

 ,DIST.LINE_NBR

 ,DIST.SCHED_NBR

HAVING (SUM(DIST.QTY_OPEN_STD)>0) OR (SUM(DIST.AMT_OPEN)>0)

In other words, we added the EXISTS clause in the beginning and added a comparison of

BUSINSS_UNIT (as per a tuning idea stated above that all primary keys must be

compared in the join to make efficient use of indexes). In addition, we let the HAVING

clause at the end be, to be double sure that correct data results.

In addition to this main step of performance tuning, we undertook the following:

- since the explain plan didn’t show the newly created index as being used, we

entered a HINT:
SELECT /*+ INDEX(DIST PSBREQ_LN_DISTRIB) */

 &BIND(PROCESS_INSTANCE)

- The table PS_REQ_DIST_SUM_WK was cleaned up of its historic data

- Rebuilt statistics on PS_REQ_LN_DIST table.

As a result of these changes, the average processing time came down from 22 min to 5

min. In addition the positive impact on the system performance due to reduced IO was

tremendous.

Case study 2:

We had created a process to forecast the amount money Rockwell may expect from its

customers in the upcoming period (7 days, 14 days etc). This report had to run once per

business unit. The stream took a long time to run and needed tuning. We determined that

it was not possible to tune the process just from a SQL tuning perspective: the SQR

process would need to be looked at.

The SQR was based on a big SELECT query which was the driver:

SELECT …

FROM PS_ITEM B,PS_ITEM_ACTIVITY F,PS_CUSTOMER U,PS_SET_CNTRL_REC V,PS_CUST_ADDR_EF_VW K,

PS_CUST_OPTION A, PS_RKA_CUST_CR_INF II

WHERE

 [$WHEREBU1]

 AND B.CUST_ID = U.CUST_ID

 AND U.SETID = V.SETID

 AND U.CUST_ID = K.CUST_ID

 AND U.SETID = K.SETID

 AND U.ADDRESS_SEQ_NUM = K.ADDRESS_SEQ_NUM

 - 9 -

 AND V.SETCNTRLVALUE = B.BUSINESS_UNIT

 AND B.CUST_ID = II.CUST_ID

 AND U.SETID = II.SETID

 AND F.BUSINESS_UNIT = B.BUSINESS_UNIT

 AND F.CUST_ID = B.CUST_ID

 AND F.ITEM = B.ITEM

 AND F.ITEM_LINE = B.ITEM_LINE

 AND (F.ENTRY_AMT <> 0 AND F.ENTRY_AMT_BASE <> 0)

 AND U.CUST_STATUS = 'A'

 AND A.PYMNT_TERMS_CD <> '0000'

 AND B.BAL_CURRENCY NOT IN ('NLG','DEM','FRF','BEF','ESP','ITL','ATS','IEP','PTE')

 AND A.SETID = U.SETID

 AND A.CUST_ID = U.CUST_ID

 AND A.EFFDT =

 (SELECT MAX(B_ED.EFFDT) FROM PS_CUST_OPTION B_ED

 WHERE A.SETID = B_ED.SETID

 AND A.CUST_ID = B_ED.CUST_ID

 AND B_ED.EFFDT <= $rpt_asofdate)

 AND B.ASOF_DT <= $rpt_asofdate

 [$RKA_customer]

GROUP BY B.BUSINESS_UNIT, B.CUST_ID, B.PO_REF, K.STATE, U.NAME1, K.CITY, B.ITEM,

B.ITEM_LINE,

B.ASOF_DT, B.BAL_AMT, B.BAL_AMT_BASE, B.BAL_CURRENCY, B.CURRENCY_CD, B.POST_DT, B.DUE_DT,

B.ACCOUNTING_DT, B.DISPUTE_STATUS, B.DISPUTE_AMOUNT, B.ENTRY_TYPE, U.CUSTOMER_TYPE,

B.DUE_DAYS,

U.SETID, U.CUST_ID, U.CNTCT_SEQ_NUM, U.BILL_TO_FLG, B.ITEM_STATUS, II.RKA_CUST_SIZE,

II.RKA_CUST_PROFILE, II.RKA_CUST_RISK

ORDER BY [$order-by]

They key bottlenecks here were the NOT clauses: as already stated in this tutorial, NOT

clauses suppress the use of indexes.

The following actions were indentified:

- The clause:
 AND (F.ENTRY_AMT <> 0 AND F.ENTRY_AMT_BASE <> 0)

was the key row reducing element. Hence the query should start with the

ITEM_ACTIVITY table (F). This was added as a LEADING hint.

- A small table containing all the currency codes

('NLG','DEM','FRF','BEF','ESP','ITL','ATS','IEP','PTE') was created, called
PS_RKA_ARFOR_TMP1

- All the customer related clauses (including A.PYMNT_TERMS_CD <> '0000') were

separated into another query which inserted data into another temporary table

called PS_RKA_ARFOR_TMP:
insert into PS_RKA_ARFOR_TMP

 select distinct cs.setid, cs.cust_id

 from ps_customer cs, ps_cust_option cso

 where cs.setid=cso.setid

 and cs.cust_id=cso.cust_id

 AND cso.PYMNT_TERMS_CD <> '0000'

 and cs.setid <> 'CA100'

 and cs.customer_type = 1

 AND cs.CUST_STATUS = 'A'

 and cso.effdt = (select max(B_ED.EFFDT)

 FROM PS_CUST_OPTION B_ED

where cso.setid = B_ED.setid

 and cso.cust_id = B_ED.cust_id

 and B_ED.eff_status = ‘A’

 and B_ED.effdt <= $rpt_asofdate);

- The final query then converted to:
SELECT …

FROM PS_ITEM B,PS_ITEM_ACTIVITY F,PS_CUSTOMER U,PS_SET_CNTRL_REC

V,PS_CUST_ADDR_EF_VW K, PS_RKA_CUST_CR_INF II

WHERE

 - 10 -

 [$WHEREBU1]

 AND B.CUST_ID = U.CUST_ID

 AND U.SETID = V.SETID

 AND U.CUST_ID = K.CUST_ID

 AND U.SETID = K.SETID

 AND U.ADDRESS_SEQ_NUM = K.ADDRESS_SEQ_NUM

 AND V.SETCNTRLVALUE = B.BUSINESS_UNIT

 AND B.CUST_ID = II.CUST_ID

 AND U.SETID = II.SETID

 AND F.BUSINESS_UNIT = B.BUSINESS_UNIT

 AND F.CUST_ID = B.CUST_ID

 AND F.ITEM = B.ITEM

 AND F.ITEM_LINE = B.ITEM_LINE

 AND (F.ENTRY_AMT <> 0 AND F.ENTRY_AMT_BASE <> 0)

 AND B.ASOF_DT <= $rpt_asofdate

 and EXISTS (select 1 from ps_rka_arfor_tmp1 t1 where t1.bal_currency =

b.bal_currency)

 and EXISTS (select 1 from ps_rka_arfor_tmp t where t.setid = u.setid

and t.cust_id = u.cust_id)

 [$RKA_customer]

GROUP BY B.BUSINESS_UNIT, B.CUST_ID, B.PO_REF, K.STATE, U.NAME1, K.CITY,

B.ITEM, B.ITEM_LINE,

B.ASOF_DT, B.BAL_AMT, B.BAL_AMT_BASE, B.BAL_CURRENCY, B.CURRENCY_CD,

B.POST_DT, B.DUE_DT,

B.ACCOUNTING_DT, B.DISPUTE_STATUS, B.DISPUTE_AMOUNT, B.ENTRY_TYPE,

U.CUSTOMER_TYPE, B.DUE_DAYS, …

The idea is to identify the bottlenecks by looking at the plan, then tweaking (building

statistics, indexes, adding hints). Afterwards checking the plan once again, or running the

query / process and checking if the tweaks took effect. If not, checking the plan once

again and trying to work backwards why the changes have not taken place, and making

more tweaks to ‘force’ Oracle to accept the suggestions.

As a result of this tuning, the processing time came down from 20 minutes to 5 minutes.

Since there were a total of around 20 processes executed daily for difference business

units, the total saving was nearly 5 hours per day.

Lessons learnt:

At the end, we come to the lessons that we learnt, performing performance tuning

activities at Rockwell Automation for more than 3 years:

- Start out with low hanging fruit

When we started out tuning efforts with Rockwell, we looked at processes that

were crunching more data than needed and added date clauses to the critical

processes. For example, REQSORC process (requisition sourcing) need not look

at ALL requisitions – more than 2 years old requisitions can simply be ignored.

In addition, queries can be modified as under:

Original
 UPDATE PS_CIP_CTRLQ

 SET CIP_MSG_STAT = '02' WHERE PROCESS_INSTANCE = #process_id;

 - 11 -

Modified
 UPDATE PS_CIP_CTRLQ

 SET CIP_MSG_STAT = '02' WHERE PROCESS_INSTANCE = #process_id and

 CIP_MSG_STAT = '01';

With the first query Oracle feels the need to modify ALL the rows in the table,

while with the second, only those having value ‘01’ are modified. Hence with the

second version, rows already having value ‘02’ are spared.

- Go after the FULL SCANs

If you have a system that doesn’t perform very well, and the previous step has

already been completed, then go after the FULL SCANs. Pick up queries that do

FULL SCAN one by one, and tune them. The timing different may not be

much, even after removing the FULL SCAN, but the overall impact on the

system will be huge, due to the much reduced IO operations. The disk is the

slowest part of the chain, remember. To check the FULL SCANS going on now,

run the SQL

SELECT target, a.sid, time_remaining, b.username, b.program, opname

FROM v$session_longops a, active b

WHERE time_remaining>120 AND a.sid=b.sid(+)

- If tape backups are happening then the tape drive can be a bottleneck. With the

RA system, there is a single tape drive shared across PROD and QA. Hence, if

both the backups are running together, then PROD performance would go down.

- Reschedule activity

This is a workaround in cases where performance of the query itself is difficult to

improve. If a job with a bad impact on performance can wait till the weekend,

better go that route. If it can run during a time when the system is underutilized go

for it. If two IO intensive jobs can run sequentially rather than parallely go for it.

On those same lines, if there are two jobs that run almost simultaneously, it may

be prudent to move one of them five minutes above or below the other.

- Deadlocks

Deadlocks are the last bane of performance tuning in a production system. Oracle

takes some time in detecting deadlocks, and killing the offending process. During

this timeframe your database queue can spiral.

These are quite easy to fix: the offending queries are present in the database log.

Hence, pick up the queries, search the processes to find where these are running

and redesign suitably. Deadlock will go away if the processes do not try to

process the same set of rows at the same time.

“Performance tuning is like cleaning your room: you have too keep doing it

every now and then in a production system.”

http://blog.hardeep.name

http://blog.hardeep.name/

 - 12 -

Please refer to the following link for more information on performance

tuning. There is a video tutorial also available:

http://blog.hardeep.name/general/20090711/app-tuning/

The content in this document is licensed under Creative Commons

Attribution-Noncommercial-No Derivative Works 2.5 India License. More

details about the license available here:

http://creativecommons.org/licenses/by-nc-nd/2.5/in/

Please feel free to share this document, in its entirety with anyone who would

be interested.

http://blog.hardeep.name/general/20090711/app-tuning/
http://creativecommons.org/licenses/by-nc-nd/2.5/in/
http://creativecommons.org/licenses/by-nc-nd/2.5/in/
http://creativecommons.org/licenses/by-nc-nd/2.5/in/

 - 13 -

INDEX

10046 trace, 5

application tuning, 5

author, 2

author names, 2

book, 2

Case study, 6, 8

cheatsheet, 5

checking, 10

cleaning, 11

code, 1

comments, 4

customer related clauses, 9

DBA, 5

Deadlocks, 11

DISTINCT, 1

distributed, 4

duplicate, 1

filter, 1

filters, 3

force, 10

forecast, 8

FULL SCANs, 11

Functions, 1

generate, 3

generating, 5

Hash, 3

HAVING, 8

hint, 4

hints, 3

historic data, 8

hold, 6

idea, 7

IN lists, 1

indented, 3

index, 4

Index full scan, 3

Index range scan, 3

indexes, 2

influence, 3

interprets, 2

IO operations, 6

join, 1

join order, 5

keys, 6

LEADING, 4, 9

limit, 5

logically, 2

low hanging fruit, 10

mean, 3

Merge, 3

multiple, 5

Nested loops, 3

NOT clauses, 9

NOT EQUAL TO, 1

optimal, 5

output, 4

pitfalls, 1

plan, 2

print, 2

process, 5, 8

process tuning, 5

quickly, 5

REQSOURCE, 6

Reschedule, 11

SESSION, 5

small table, 9

SQL query tuning, 1

start, 2

statistics, 3, 8

Statistics, 4

STATPACK, 5

STATUS, 4

Table access by index rowid, 3

Table access full, 3

throttling, 6

tkprof, 5

Toad, 3

trace, 5

tweaking, 10

udump, 5

UNION, 1

UNION ALL, 1

worst, 5

